skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parry, Isabelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Illicit fentanyl and fentanyl analogs are a growing concern in the United States as opioid related deaths rise. Given that fentanyl analogs are readily obtained by modifying the structure of fentanyl, illicit fentanyl analogs appearing on the black market often contain similar structures, making analogue differentiation and identification difficult. Thus, obtaining both precursor and product ion data during analysis is becoming increasingly valuable in fentanyl analog characterization. In this paper, we provide GC column retention time, precursor, and product ion mass spectrum data for 74 fentanyl analogs that were analyzed using atmospheric pressure chemical ionization-gas chromatography−mass spectrometry (APCI-GC-MS) utilizing a triple quadrupole mass analyzer. During analysis, precursor ions underwent collision induced dissociation (CID) by increasing the collision energy (10, 20, 30, 40, and 50 V) throughout a single run. Data reveal that APCI readily produces product ions of the piperidine and N-alkyl chain but rarely provides data on the acyl group. Furthermore, fentanyl analogs with greater substitution at the N-alkyl chain demonstrate a greater preference for dissociation at the N-αC and αC-βC bond, while greater substitution at the amide group leads to fragmentation at the N−C4 bond. 
    more » « less
    Free, publicly-accessible full text available March 5, 2026